quarta-feira, 10 de janeiro de 2018

MEMÓRIA DDR

A memória DDR (Double Data Rate) é o padrão que substituiu as tradicionais memórias SDR SDRAM (mais conhecidas como "memórias SDRAM" ou, ainda, como "memórias DIMM"), sendo muito bem recebida pelo mercado, especialmente no segmento de computadores pessoais.

Surgimento das memórias DDR
Na época em que o processador Pentium III, da Intel, era um dos principais produtos do tipo no mercado, a taxa padrão do FSB (Front Side Bus) - essencialmente, a velocidade na qual o processador se comunica com a memória RAM - era de 133 MHz, equivalente a 1.064 MB por segundo. No entanto, sabe-se que, via de regra, o chipset da placa-mãe não utiliza a frequência de FSB para se comunicar com a memória, mas sim a velocidade desta última. Nessa ocasião, o padrão para velocidade das memórias também era de 133 MHz (as conhecidas memórias SDRAM PC-133), que também fornecia uma taxa de transferência de 1.064 MB por segundo. É possível notar, com isso, que havia um certo "equilíbrio" nas velocidades de comunicação entre os componentes do computador.
Todavia, com o lançamento de chips como o Pentium 4, da Intel, e o Athlon, da AMD, esse "equilíbrio" deixou de existir, pois o FSB dos processadores passou a ter mais velocidade, enquanto que as memórias continuavam no padrão PC-133, mantendo a frequência em 133 MHz. Nestas condições, isso significa que o computador como um todo não consegue aproveitar todos os recursos de processamento.
Para usuários do Pentium 4 até havia uma alternativa: utilizar as memórias do tipo Rambus (ou RDRAM). Esse tipo era mais rápido que as memórias PC-133, mas tinha algumas desvantagens: só funcionava com processadores da Intel, possuía preço muito elevado e as placas-mãe que suportavam as memórias Rambus também eram muito caras.
Neste mesmo período, as memórias DDR já eram realidade, mas a Intel tentava popularizar as memórias Rambus, o que a fazia "ignorar" a existência das primeiras. A AMD, por sua vez, precisava de uma alternativa eficiente que pudesse trabalhar integralmente com seus novos processadores. A companhia acabou apostando nas memórias DDR e, a partir daí, este tipo passou a se popularizar, especialmente porque a Intel, logo depois, teve que aderir à ideia.
Mas o simples surgimento das memórias DDR não foi uma solução imediata para os problemas de velocidade entre memórias e  FSB. Somente com o lançamento das memórias Dual-Channel DDR é que a solução se tornou efetivamente eficaz.

Funcionamento das memórias DDR
As memórias DDR são bastante semelhantes às memórias SDR SDRAM. Estas últimas trabalham de maneira sincronizada com o processador, evitando os problemas de atraso existentes em tecnologias anteriores. O grande diferencial da tecnologia DDR, porém, está em sua capacidade de realizar o dobro de operações por ciclo de clock (em poucas palavras, a velocidade com a qual o processador solicita operações. Assim, enquanto uma memória SDR SDRAM PC-100 trabalha a 100 MHz, por exemplo, um módulo DDR com a mesma frequência faz com que esta corresponda ao dobro, isto é, a 200 MHz.
Mas, como isso é possível? Nas memórias, os dados são armazenados em espaços denominados células. Estas são organizadas em uma espécie de matriz, isto é, são orientadas em um esquema que lembra linhas e colunas. O cruzamento de uma linha com uma coluna forma o que conhecemos como endereço de memória.

 Endereço de memória








Memória
Velocidade
SDRAM PC-100
800 MB/s
SDRAM PC-133
1.064 MB/s
DDR-200 ou PC-1600
1.600 MB/s
DDR-266 ou PC-2100
2.100 MB/s
DDR-333 ou PC-2700
2.700 MB/s
DDR-400 ou PC-3200
3.200 MB/s
Dual DDR-226
4.200 MB/s
Dual DDR-333
5.400 MB/s
Dual DDR-400
6.400 MB/s
Normalmente, nas operações de leitura e gravação, só é possível acessar uma linha por vez. Mas as memórias DDR possuem um "truque": elas acessam duas posições diferentes, mas ambas na mesma linha. É por isso que essa tecnologia consegue realizar o dobro de operações por ciclo, uma no início deste e outra no final.
Por causa desta característica, as memórias DDR passaram a contar com um padrão diferente de nomenclatura. Nos módulos SDR SDRAM, encontram-se expressões como PC-100 e PC-133, onde o número indica a frequência. Assim, um pente PC-133 informa que o dispositivo trabalha a 133 MHz. Nas memórias DDR, isso também ocorre, mas considerando a característica de duplicidade por ciclo. Assim, um módulo DDR-200, por exemplo, trabalha, na verdade, à taxa de 100 MHz. Mas, na nomenclatura alternativa, como PC-1600, por exemplo, a quantidade de megabytes transferidos por segundo é que é considerada. Observe a tabela.
Vale frisar que esses valores de transferência são teóricos, ou seja, indicam o alcance máximo. Na prática, uma série de fatores pode influenciar na velocidade de transferência. Mas, mesmo sendo teórico, como esse cálculo é feito?
É simples: em suas operações, as memórias DDR conseguem transferir até 64 bits por vez, ou seja, 8 
bytes. Basta então multiplicar este valor pela frequência da memória mais a quantidade de operações por ciclo. Assim, o cálculo de um módulo DDR-400 é o seguinte:
8 (64 bits) x 200 (frequência) x 2 (operações por ciclo) = 3.200
O resultado final é dado em megabytes por segundo.
Embora muito parecidas com as memórias SDR SDRAM, as memórias DDR possuem outro diferencial considerável: trabalham com 2,5 V, contra 3,3 V da primeira. Assim sendo, reduzem o consumo de energia, aspecto especialmente importante em dispositivos portáteis, como notebooks.

Aspectos físicos das memórias DDR
Visualmente, é fácil distinguir as memórias DDR das memórias SDR SDRAM. As primeiras possuem apenas uma divisão no encaixe do módulo, entre os terminais de contato, enquanto que as segundas contam com dois. Além disso, as memórias DDR utilizam 184 terminais, contra 168 pinos do padrão SDR SDRAM.

Memória DDR: observe a abertura entre os terminais - Imagem por Kingston

No que se refere ao encapsulamento, os chips DDR geralmente utilizam o padrão TSOP (Thin Small Outline Package), mas também é possível encontrar versões em CSP (Chip Scale Package), embora mais raras.



Dual-Channel DDR

Pode-se considerar o Dual-Channel como uma solução que ameniza o fato de as memórias não acompanharem a velocidade dos processadores. Para isso, o esquema faz com que as memórias DDR transfiram o dobro de dados por vez. Assim, 3.200 MB por segundo podem ser tornar 6.400 MB por segundo.
Isso é possível porque no chipset da placa-mãe - ou mesmo dentro de processadores, no caso de alguns modelos mais atuais - há um circuito especial chamado controlador de memória, que responde por todos os aspectos de acesso e utilização desta. No Dual-Channel, esse controlador faz com que as memórias DDR possam transferir o dobro de dados por vez, ou seja, em vez de 64 bits, transferem 128 bits (16 bytes). Com isso, o cálculo do tópico anterior passa a ser:
16 (128 bytes) x frequência x 2 (operações por ciclo)
Para ativar o esquema Dual-Channel em um computador, é necessário ter um chipset compatível (ou, se for o caso, um processador). Além disso, é recomendável ter um ou dois pares de módulos de memória idênticos (ou, ao menos, com as mesmas especificações). A igualdade diminui o risco de problemas. Neste ponto, uma dica interessante é adquirir um kit para Dual-Channel, que oferece dois pentes de memória DDR próprios para funcionar neste modo.
Consulte o manual da placa-mãe para saber em quais slots os módulos devem ser instalados para ativar o modo Dual-Channel, assim como para saber se é necessário alterar algum parâmetro no setup do BIOS.

Finalizando

As memórias DDR tiveram grande aceitação no mercado, no entanto, como a evolução da tecnologia não para, especialmente no que se refere aos processadores, novos padrões tiveram que ser lançados para acompanhar as velocidades dos chips mais recentes: trata-se das memórias DDR2 e DDR3.


MEMÓRIAS DDR3 - DDR4

DDR3 ou DDR4: entenda as diferenças e veja qual o melhor tipo memória
Diferença física do modelo DDR3 e DDR4 da série Dominator Platinum (Foto: Divulgação/Corsair)

A DDR3 é uma memória de padrão já estabelecido, enquanto a DDR4 é a evolução da tecnologia.
A princípio, uma comparação direta entre as especificações dos dois modelos é um pouco difícil, visto que a evolução do padrão não traz um grande salto de desempenho, principalmente para o usuário doméstico. 
As memórias DDR4 possuem características superiores ao modelo anterior. Ganhos que, mesmo não ofertando um grande avanço para o uso básico, se destacam a medida que a DDR3 atinge os seus limites. 
Assim, a DDR4 é uma opção mais interessante para quem deseja uma máquina capaz de rodar programas e jogos mais pesados, preparada para futuros upgrades.
Visualmente, os modelos DDR3 e DDR4 apresentam pequenas diferenças. Como a quantidade de pinos de contato e a posição de encaixe. Outro detalhe é que a DDR4 é ligeiramente mais espessa e possui uma leve curva na borda inferior.
Em termos técnicos, os módulos de DDR4 são mais eficientes no quesito energia, utilizando 1,2 volts, enquanto a DDR3 usa 1,5 volts na alimentação. Essa pequena diferença pode gerar uma economiza de até 40% no consumo de energia, o que ajuda a prolongar a vida da bateria para os notebooks, por exemplo.

Memórias DDR4 são mais econômicas, reduzindo consumo de bateria em notebook (Foto: Divulgação/Crucial)

Além do baixo consumo, outras vantagens das memórias da nova geração são a capacidade e a frequência de operação. A DDR3 está disponível com capacidades de 512 MB até 8 GB. Já a DDR4, de 4 GB a 16 GB. 
Em relação a frequência, a DDR3 trabalha com uma taxa de 800 a 2.400 MHz, enquanto que a DDR4 opera com valores de 2.133 até 4.266 MHz. É uma grande diferença, que permite mais transferências em um mesmo intervalo de tempo.
Em contrapartida, temos um aumento da latência nas memórias DDR4, que é o atraso para a memória iniciar uma leitura. A taxa aumenta conforme a frequência de operação. Nas especificações de uma memória é possível ver esse dado, geralmente indicado como CL10 ou CL11 nas DDR3 e CL14 ou CL15 nas DDR4. Quanto menor o CL, menor é o atraso na leitura.
A taxa de latência é responsável pela pouca diferença de desempenho entre os padrões em comparativos. Por exemplo, dois computadores com configuração de hardware similar, com 8 GB de memória, sendo um DDR3 e o outro DDR4, terão desempenho parecidos. Afinal, apesar do DDR4 operar com uma frequência maior, também tem uma latência maior.
Apesar de devagar, o que se deve muito ao alto custo inicial da tecnologia e ao bom desempenho da antecessora, a migração para o uso da DDR4 é uma tendência natural. 
Se você pretende adquirir um novo computador ou fazer um upgrade, PCs que utilizem DDR3 são opções com um custo mais baixo. Porém, com uma vida útil já limitada pela tecnologia, sendo bem provável que nos próximos dois anos ou menos, você tenha um equipamento com poucas ou nenhuma opção de melhoria caso opte por um.
Já os que utilizam DDR4, são mais caros. Entretanto, são uma excelente opção para quem quer investir a longo prazo e ter um PC capaz de trabalhar em alta performance e  possibilidades de upgrade durante os próximos anos. A configuração é ideal para gamers e usuários de programas pesados, como os de modelagem 3D e edição de vídeo.

Kit de Memória Kingston HyperX Fury 8GB(2x4GB) DDR4 é encontrado a partir de R$290 (Foto: Divulgação/Kingston)

Vale lembrar também que se você já possui um computador que usa DDR3 e quer passar para DDR4, será necessário investir não só nas memórias, mas em uma placa-mãe e um processador compatível.

No Brasil, é possível encontrar diversos modelos de diferentes fabricantes, como Corsair, G.Skill, Crucial e Kingston. A DDR3 tem preço médio de R$140 com 4 GB e R$260 de 8 GB. Já a memória DDR4 é vendida por cerca de R$200 a de 4 GB, R$400 a de 8 GB e R$800 a de 16 GB. 

Uma dica que serve para ambos os modelos é optar sempre que possível pela memória com menor taxa de latência e maior frequência de operação. Além disso, procure também os kits com pares de memórias, que saem mais em conta do que a individual.

terça-feira, 9 de janeiro de 2018

TECNOLOGIAS DE MEMÓRIAS

Tecnologias de memórias

Várias tecnologias de memórias foram (e são) criadas com o passar do tempo. É graças a isso que, periodicamente, encontramos memórias mais rápidas, com maior capacidade e até memórias que exigem cada vez menos energia. Eis uma breve descrição dos principais tipos de memória RAM:
FPM (Fast-Page Mode): uma das primeiras tecnologias de memória RAM. Com o FPM, a primeira leitura da memória tem um tempo de acesso maior que as leituras seguintes. Isso porque são feitos, na verdade, quatro operações de leitura seguidas, ao invés de apenas uma, em um esquema do tipo x-y-y-y, por exemplo: 3-2-2-2 ou 6-3-3-3. A primeira leitura acaba sendo mais demorada, mas as três seguintes são mais rápidas. Isso porque o controlador de memória trabalha apenas uma vez com o endereço de uma linha (RAS) e, em seguida, trabalha com uma sequência de quatro colunas (CAS), ao invés de trabalhar com um sinal de RAS e um de CAS para cada bit. Memórias FPM utilizavam módulos SIMM, tanto de 30 quanto de 72 vias;
EDO (Extended Data Output): a sucessora da tecnologia FPM é a EDO, que possui como destaque a capacidade de permitir que um endereço da memória seja acessado ao mesmo tempo em que uma solicitação anterior ainda está em andamento. Esse tipo foi aplicado principalmente em módulos SIMM, mas também chegou a ser encontrado em módulos DIMM de 168 vias. Houve também uma tecnologia semelhante, chamada BEDO (Burst EDO), que trabalhava mais rapidamente por ter tempo de acesso menor, mas quase não foi utilizada, pois tinha custo maior por ser de propriedade da empresa Micron. Além disso, foi "ofuscada" pela chegada da tecnologia SDRAM;



Módulo de memória EDO


SDRAM (Synchronous Dynamic Random Access Memory): as memórias FPM e EDO são assíncronas, o que significa que não trabalham de forma sincronizada com o processador. O problema é que, com processadores cada vez mais rápidos, isso começou a se tornar um problema, pois muitas vezes o processador tinha que esperar demais para ter acesso aos dados da memória. As memórias SDRAM, por sua vez, trabalham de forma sincronizada com o processador, evitando os problemas de atraso. A partir dessa tecnologia, passou-se a considerar a frequência com a qual a memória trabalha para medida de velocidade. Surgiam então as memórias SDR SDRAM (Single Data Rate SDRAM), que podiam trabalhar com 66 MHz, 100 MHz e 133 MHz (também chamadas de PC66, PC100 e PC133, respectivamente). Muitas pessoas se referem a essa memória apenas como "memórias SDRAM" ou, ainda, como "memórias DIMM", por causa de seu módulo. No entanto, a denominação SDR é a mais adequada;

Módulo de memória SDR SDRAM - 
Observe que neste tipo há duas divisões entre os terminais de contato


DDR SDRAM (Double Data Rate SDRAM): as memórias DDR apresentam evolução significativa em relação ao padrão SDR, isso porque elas são capazes de lidar com o dobro de dados em cada ciclo de clock (memórias SDR trabalham apenas com uma operação por ciclo). Assim, uma memória DDR que trabalha à frequência de 100 MHz, por exemplo, acaba dobrando seu desempenho, como se trabalhasse à taxa de 200 MHz. Visualmente, é possível identificá-las facilmente em relação aos módulos SDR, porque este último contém duas divisões na parte inferior, onde estão seus contatos, enquanto que as memórias DDR2 possuem apenas uma divisão. 
- DDR2 SDRAM: como o nome indica, as memórias DDR2 são uma evolução das memórias DDR. Sua principal característica é a capacidade de trabalhar com quatro operações por ciclo de clock, portanto, o dobro do padrão anterior. Os módulos DDR2 também contam com apenas uma divisão em sua parte inferior, no entanto, essa abertura é um pouco mais deslocada para o lado.

                                                                             memória DDR2 acima e DDR abaixo - 
 Note que a posição da divisão entre os terminais de contato é diferente







- DDR3 SDRAM: as memórias DDR3 são, obviamente, uma evolução das memórias DDR2. Novamente, aqui dobra-se a quantidade de operações por ciclo de clock, desta vez, de oito. Uma novidade aqui é a possibilidade de uso de Triple-Channel.






Rambus (Rambus DRAM): as memórias Rambus recebem esse nome por serem uma criação da empresa Rambus Inc. e chegaram ao mercado com o apoio da Intel. Elas são diferentes do padrão SDRAM, pois trabalham apenas com 16 bits por vez. Em compensação, memórias Rambus trabalham com frequência de 400 MHz e com duas operações por ciclo de clock. Tinham como desvantagens, no entanto, taxas de latência muito altas, aquecimento elevado e maior custo. Memórias Rambus nunca tiveram grande aceitação no mercado, mas também não foram um total fiasco: foram utilizadas, por exemplo, no console de jogos Nintendo 64. Curiosamente, as memórias Rambus trabalham em pares com "módulos vazios" ou "pentes cegos". Isso significa que, para cada módulo Rambus instalado, um "módulo vazio" tem que ser instalado em outro slot. Essa tecnologia acabou perdendo espaço para as memórias DDR.

Finalizando

Com o passar do tempo, a evolução das tecnologias de memórias não somente as torna mais rápidas, mas também faz com que passem a contar com maior capacidade de armazenamento de dados. Memórias ROM do tipo Flash, por exemplo, podem armazenar vários gigabytes. No que se refere às memórias RAM, o mesmo ocorre. 

MÓDULOS DE MEMÓRIA

Módulos de memória

Entendemos como módulo ou, ainda, pente, uma pequena placa onde são instalados os encapsulamentos de memória. Essa placa é encaixada na placa-mãe por meio de encaixes (slots) específicos para isso.


SIPP (Single In-Line Pins Package): é um dos primeiros tipos de módulos que chegaram ao mercado. É formato por chips com encapsulamento DIP. Em geral, esses módulos eram soldados na placa-mãe;
SIMM (Single In-Line Memory Module): módulos deste tipo não eram soldados, mas encaixados na placa-mãe. A primeira versão continha 30 terminais de contato (SIMM de 30 vias) e era formada por um conjunto de 8 chips (ou 9, para paridade). Com isso, podiam transferir um byte por ciclo de clock. Posteriormente surgiu uma versão com 72 pinos (SIMM de 72 vias), portanto, maior e capaz de transferir 32 bits por vez. Módulos SIMM de 30 vias podiam ser encontrados com capacidades que iam de 1 MB a 16 MB. Módulos SIMM de 72 vias, por sua vez, eram comumente encontrados com capacidades que iam de 4 MB a 64 MB;
DIMM (Double In-Line Memory Module): os módulos DIMM levam esse nome por terem terminais de contatos em ambos os lados do pente. São capazes de transmitir 64 bits por vez. A primeira versão - aplicada em memória SDR SDRAM - tinha 168 pinos. Em seguida, foram lançados módulos de 184 vias, utilizados em memórias DDR, e módulos de 240 vias, utilizados em módulos DDR2 e DDR3. Existe um padrão DIMM de tamanho reduzido chamado SODIMM (Small Outline DIMM), que são utilizados principalmente em computadores portáteis, como notebooks;

RIMM (Rambus In-Line Memory Module): formado por 168 vias, esse módulo é utilizado pelas memórias Rambus, Um fato curioso é que para cada pente de memória Rambus instalado no computador é necessário instalar um módulo "vazio", de 184 vias, chamado de C-
RIMM (Continuity-RIMM).

                                                                                                           
Módulo de memória inserido em um slot

IMAGENS